module myna.application.bnpy.plot
Functions for generating plots of clustering data
function emptyTicks
emptyTicks(x, pos)
Return blank ticks for matplotlib.ticker.FuncFormatter()
function cluster_colormap
cluster_colormap(n_digits, colorspace='tab20')
Return colormap RGB colors, matplotlib colormap object, and color floats
function get_scatter_marker_size
get_scatter_marker_size(fig, ax, axis_distance, magic_number=7)
Get marker size so that adjacent square markers are just touching without overlapping. Calibrated at 300 dpi and 250e-6 axis_distance, approximately correct at other values
function add_cluster_colormap_colorbar
add_cluster_colormap_colorbar(fig, ax, colors, cmap, n_clusters)
function pd_normalized_histogram
pd_normalized_histogram(dataframe, scaledRanges, xmin=0, xmax=1, dpi=150)
Plot distribution of values for each column in a pandas.dataFrame
function pd_histogram
pd_histogram(dataframe, scaledRanges, dpi=150)
Plot distribution of values for each column in a pandas dataframe
function voxel_GV_plot
voxel_GV_plot(df, colors, cmap, exportName, dpi=150)
Plot GV plot for a cluster pandas.dataFrame with the given colormap
function voxel_id_stacked_histogram
voxel_id_stacked_histogram(
df,
field,
colors,
exportName,
dpi=150,
ids=None,
verbose=False
)
Plot stacked histogram for clustering training data
function cluster_composition_map
cluster_composition_map(xx, yy, mesh, cluster, exportName, dpi=150)
Plot the spatial map of supervoxel composition for a specific cluster given a supervoxel mesh
function supervoxel_composition_hist
supervoxel_composition_hist(meshData, col, exportName, xmin=0, xmax=1, dpi=150)
Plot a histogram of the volume fraction of composition for each cluster given a supervoxel mesh
function supervoxel_id_colormesh
supervoxel_id_colormesh(
mesh,
colorValues,
cmap,
exportName,
writeDir='cluster_supervoxels',
dpi=150
)
Plot a colormesh of the supervoxel clustering IDs given a cluster supervoxel mesh and colormap
function combined_composition_colormesh
combined_composition_colormesh(id, nrows=3, ncols=5, dpi=150)
For all datasets in "training_supervoxels", plot spatial composition maps for each cluster in a single plot.
function combined_supervoxel_composition_scatter
combined_supervoxel_composition_scatter(
df,
n_voxel_clusters,
supervoxel_size,
nrows=3,
ncols=5,
dpi=150,
export_name='supervoxel_composition_map.png'
)
This file was automatically generated via lazydocs.